# RCS and ANDCO Electric Actuators Electric Actuator Controller

Microprocessor Based Analog & Digital Positioner User Technical Manual

Models: ACT100 - 115/230A ACT100 - 24VAC

RCS<sup>™</sup> and ANDCO<sup>™</sup>

Refer all questions not covered in this manual to BHGE [Dresser, LLC.] 16240 Port Northwest Drive, Suite 100 Houston, TX 77041 Tel: +1 832-590-2306, Fax: +1 713-849-2879



THESE INSTRUCTIONS PROVIDE THE CUSTOMER/OPERATOR WITH IMPORTANT PROJECT-SPECIFIC REFERENCE INFORMATION IN ADDITION TO THE CUSTOMER/OPERATOR'S NORMAL OPERATION AND MAINTENANCE PROCEDURES. SINCE OPERATION AND MAINTENANCE PHILOSOPHIES VARY, BHGE (BAKER HUGHES, A GE COMPANY AND ITS SUBSIDIARIES AND AFFILIATES) DOES NOT ATTEMPT TO DICTATE SPECIFIC PROCEDURES, BUT TO PROVIDE BASIC LIMITATIONS AND REQUIREMENTS CREATED BY THE TYPE OF EQUIPMENT PROVIDED.

THESE INSTRUCTIONS ASSUME THAT OPERATORS ALREADY HAVE A GENERAL UNDERSTANDING OF THE REQUIREMENTS FOR SAFE OPERATION OF MECHANICAL AND ELECTRICAL EQUIPMENT IN POTENTIALLY HAZARDOUS ENVIRONMENTS. THEREFORE, THESE INSTRUCTIONS SHOULD BE INTERPRETED AND APPLIED IN CONJUNCTION WITH THE SAFETY RULES AND REGULATIONS APPLICABLE AT THE SITE AND THE PARTICULAR REQUIREMENTS FOR OPERATION OF OTHER EQUIPMENT AT THE SITE.

THESE INSTRUCTIONS DO NOT PURPORT TO COVER ALL DETAILS OR VARIATIONS IN EQUIPMENT NOR TO PROVIDE FOR EVERY POSSIBLE CONTINGENCY TO BE MET IN CONNECTION WITH INSTALLATION, OPERATION OR MAINTENANCE. SHOULD FURTHER INFORMATION BE DESIRED OR SHOULD PARTICULAR PROBLEMS ARISE WHICH ARE NOT COVERED SUFFICIENTLY FOR THE CUSTOMER/OPERATOR'S PURPOSES THE MATTER SHOULD BE REFERRED TO BHGE.

THE RIGHTS, OBLIGATIONS AND LIABILITIES OF BHGE AND THE CUSTOMER/OPERATOR ARE STRICTLY LIMITED TO THOSE EXPRESSLY PROVIDED IN THE CONTRACT RELATING TO THE SUPPLY OF THE EQUIPMENT. NO ADDITIONAL REPRESENTATIONS OR WARRANTIES BY BHGE REGARDING THE EQUIPMENT OR ITS USE ARE GIVEN OR IMPLIED BY THE ISSUE OF THESE INSTRUCTIONS.

THESE INSTRUCTIONS CONTAIN PROPRIETARY INFORMATION OF BHGE, AND ARE FURNISHED TO THE CUSTOMER/OPERATOR SOLELY TO ASSIST IN THE INSTALLATION, TESTING, OPERATION, AND/OR MAINTENANCE OF THE EQUIPMENT DESCRIBED. THIS DOCUMENT SHALL NOT BE REPRODUCED IN WHOLE OR IN PART NOR SHALL ITS CONTENTS BE DISCLOSED TO ANY THIRD PARTY WITHOUT THE WRITTEN APPROVAL OF BHGE.

# Contents

| 1.                                        | Get                                         | tting Started                                               | 1 |  |  |
|-------------------------------------------|---------------------------------------------|-------------------------------------------------------------|---|--|--|
|                                           | a.                                          | Document Conventions                                        | 1 |  |  |
|                                           | b.                                          | Installation Notes                                          | 1 |  |  |
|                                           | c.                                          | Key Functions                                               | 1 |  |  |
| 2.                                        | Qu                                          | ick Setup Instructions                                      | 1 |  |  |
|                                           | a.                                          | Setting the analog input type:                              | 1 |  |  |
|                                           | b.                                          | Setting the analog output type:                             | 1 |  |  |
|                                           | c.                                          | Selecting output shaft rotation:                            | 1 |  |  |
|                                           | d.                                          | Positioning the potentiometer shaft:                        | 1 |  |  |
|                                           | e.                                          | Calibrating the controller:                                 | 2 |  |  |
|                                           | f.                                          | Exiting setup mode:                                         | 2 |  |  |
| 3.                                        | Rel                                         | oading the Factory Default Settings                         | 2 |  |  |
| 4.                                        | Set                                         | ting Nonstandard Input / Output Ranges                      | 2 |  |  |
|                                           | a.                                          | Setting a nonstandard analog input:                         | 2 |  |  |
|                                           | b.                                          | Setting a nonstandard analog output:                        | 3 |  |  |
| 5.                                        | Sel                                         | ecting an Alternate Fail Position on Loss of Command Signal | 3 |  |  |
|                                           | a.                                          | Setting the Fail Safe Position:                             | 3 |  |  |
|                                           | b.                                          | Setting the Fail Safe Loss of Signal Threshold:             | 3 |  |  |
| 6.                                        | Usi                                         | ng the Current Protection Option                            | 3 |  |  |
| 7.                                        | The                                         | e Automatic Calibration System                              | 1 |  |  |
|                                           | a.                                          | Starting a calibration                                      | 1 |  |  |
|                                           | b.                                          | Calibration Steps                                           | 1 |  |  |
|                                           | c.                                          | Troubleshooting a failed calibration                        | 5 |  |  |
| 8.                                        | Со                                          | ntroller Menus                                              | 5 |  |  |
|                                           | a.                                          | Basic Setup Menu                                            | 7 |  |  |
|                                           | b.                                          | Advanced Setup Menus                                        | 3 |  |  |
|                                           |                                             | i. The Accuracy Menu [ACC]                                  | 3 |  |  |
|                                           |                                             | ii. The Jogging System Menu 10                              | ) |  |  |
|                                           |                                             | iii. The Protection Menu                                    | 1 |  |  |
|                                           |                                             | iv. The Limit Switch Menu 12                                | 2 |  |  |
| 9.                                        | Err                                         | or Messages and Troubleshooting 12                          | 2 |  |  |
| 10.                                       | Sel                                         | ecting Local/Remote Operation1                              | 3 |  |  |
|                                           | a.                                          | Manual Operation                                            | 5 |  |  |
|                                           | b.                                          | Remote Operation Configuration Registers (Modbus)           | 5 |  |  |
|                                           | c.                                          | Remote Operation Commands (BUSS)                            | 5 |  |  |
|                                           | d.                                          | Parameters Available by READ Commands 14                    | ł |  |  |
|                                           | e.                                          | DeviceNet Operation                                         | 5 |  |  |
| 11.                                       | Со                                          | nnection Diagrams                                           | 3 |  |  |
| Figu                                      | res                                         |                                                             |   |  |  |
| Figu                                      | re 1                                        | - Location of the Current Sense Transformer                 | 3 |  |  |
| Figure 2 – External Connection Details 19 |                                             |                                                             |   |  |  |
| Figu                                      | Figure 3 – Description of Analog Sources 19 |                                                             |   |  |  |

# 

When manually operating the actuator, do not move actuator beyond the end of travel limit switch settings!

# 1. Getting Started

# a. Document Conventions

The following documentation conventions are used throughout this manual:

- Values shown on the display will be indicated with bold italics i.e. CC-r with upper and lower case letters used to simulate the actual display;
- 2. Keyboard keys will be shown using the  $\uparrow$ ,  $\checkmark$ ,  $\leftarrow$  and **SELECT** symbols in bold;
- 3. Menu items will be indicated by the mnemonic shown on the controller's display.

First this manual will introduce the concepts required to setup a standard actuator. Other sections will cover the instructions for actuators requiring special settings.

# b. Installation Notes

Note 1: These instructions assume that the ACT board is installed in the actuator and that all **safety**, installation and Controller startup instructions outlined in the specific RCS and ANDCO installation and instruction manuals have been followed. Verify that the actuator is in correct operating condition before an attempt is made to calibrate the ACT board. With the exception of **Step 2.d. Positioning the potentiometer shaft and Step 2.e. Calibrating the controller**, the actuator does not move during the setup.

Note 2: The Quick Setup instructions are correct for:

- Input signal requirements of 4-20 mAdc, 1-5 Vdc, 0-10 Vdc or 2-10 Vdc
- Output signal requirements of 4-20 mAdc, 1-5 Vdc, 0-10 Vdc or 2-10 Vdc
- To select Loss of input signal:
- I. The actuator does not move,
- II. Fails in last place.
- III. For a setting of zero input signal, the system fails to minimum signal position.
- IV. For all other options, refer to sections 4 7 of this manual.

Note 3: For rotary actuators: the terms "clockwise (C)" and "counterclockwise (CC)" refer to the direction of rotation of the actuator output shaft, as viewed from the top of the actuator. For linear actuators: the term "extend (E)", applies to the rod moving away from the body of the actuator, and "retract (R)", applies to the rod moving into the body of the actuator, refer to the direction of movement of the extension rod. The ACT is always wired as shown in Figure 2. Refer to **Figure 2** for status lamp descriptions. Output rotation, for rotary actuators, or extension rod direction of movement, for linear actuators, is changed using **Step 2.c.** 

# c. Key Functions

There are four keys used to select the system menus. The table below describes each key:

- ← Go BACK one menu level and do not save value
- ↑ Move UP through menus or increase a value
- ✤ Move **DOWN** through menus or decrease value
- **SELECT** a menu item or save value

When working within the menus it is not necessary to return to the top level between setting parameters. The parameter value is saved to non-volatile memory when the **SELECT** key is pressed.

# 2. Quick Setup Instructions

# a. Setting the analog input type:

- Use the ↑ or ↓ pushbutton until it is displayed, then press the SELECT key.
- Press the ↑ or ↓ pushbutton until the type of input signal required, 1-5 Vdc, 0-10 Vdc, 2-10 Vdc, 4-20 mAdc is displayed.
- 3. Press the **SELECT** pushbutton to save the selection.
- b. Setting the analog output type:
  - Use the ↑ or ↓ pushbutton until oUt is displayed, then press the SELECT key.
  - Press the ↑ or ↓ pushbutton until the type of output signal required, 1-5 Vdc, 0-10 Vdc, 2-10 Vdc, 4-20 mAdc is displayed.
  - 3. Press the **SELECT** pusbutton to save the selection.
- c. Selecting output shaft rotation:
  - Press the ↑ or ↓ pushbutton until rotn is displayed, then press the SELECT key.
  - Press the ↑ or ♥ pushbutton to select the direction of travel required to move the actuator towards the maximum signal position, *CC-r* (counterclockwise for rotary actuators or retract for linear actuators) or *C-E* (clockwise for rotary actuators or extend for linear actuators)
  - 3. Press the **SELECT** pushbutton to save the selection.
- d. Positioning the potentiometer shaft:
  - Press the ↑ or ↓ pushbutton until Pot is displayed, then press the SELECT pushbutton.
  - The display will change to show the actual potentiometer value in internal divisions (0-1023) and the ↑ or ♥ pushbutton will now operate the actuator motor.
  - Run the actuator to approximately 50% of travel. Loosen the set screws retaining the potentiometer shaft. Rotate the shaft until the display reads

approximately **510** divisions (50% of potentiometer span). Re-tighten the set screws.

- 4. To verify the potentiometer and limit switch settings, press the ↑ pushbutton to energize the actuator. The value displayed on the LED array should increase towards the maximum of 1023 divisions. When the limit switch stops the actuator, check that the switch setting is correct for the required travel. The displayed value will typically be 975 divisions, but must not exceed 1000 divisions.
- Now press the 

   pushbutton to move the actuator
   in the opposite direction of travel. The value
   displayed should decrease in value towards the
   minimum value of zero. The displayed value will
   typically be 50 divisions, but must not be less than
   20 divisions. The difference between the end of
   travel values must be at least 500 divisions.
- 6. Press the SELECT pushbutton to exit potentiometer setup.
- e. Calibrating the controller:
  - Press the ↑ or ↓ pushbutton until *Cal* is displayed, then press the SELECT key.
  - Press the ↑ or ↓ pushbutton until YES is displayed, then press the SELECT key.
  - 3. The automatic calibration sequence will now begin.
  - 4. To stop a calibration in progress, press the | key. The calibration will be aborted and the previous calibration restored.

The display will indicate the calibration steps, **C 1** though **C 11**, being performed. Should the calibration sequence fail, the display will indicate **CF X**, where **X** is the number of the calibration step that failed. **See Section 9. The Automatic Calibration System** for a description of the calibration steps. No calibration values are saved unless the calibration sequence completes normally. When calibration is complete, the display will again show **Cal**.

- f. Exiting setup mode:
  - Press the push button until the display shows the actual actuator position and the actuator begins to follow the input command signal.

# 3. Reloading the Factory Default Settings

The controller can restore all of the operating parameters to known values. The parameters should be restored under the following conditions:

- 1. The controller is operating erratically or positioning inaccurately;
- 2. The standard or advanced menus have been modified with unpredictable results;
- 3. The controller has been re-installed in a different actuator.

There are four available Factory Default setups. Each of the setups is accessed using one of the four keyboard keys as described in the table below:

| Key          | Analog In/Out | Calibrate Delay<br>Seconds |
|--------------|---------------|----------------------------|
| ĸ            | 1 - 5 Vdc     | 5                          |
| $\checkmark$ | 4 – 20 mAdc   | 5                          |
| <b>^</b>     | 0 – 10 Vdc    | 5                          |
| +            | 4 – 20 mAdc   | 20                         |

To reload the Factory Default Settings:

- 1. Disconnect the power source from the actuator.
- 2. Press and hold the desired key.
- 3. Restore the power to the actuator.
- 4. The display will read: *Fact*, then *done*.
- 5. Release the key.

The controller will require configuration and calibration after the reload operation is complete. See Section 2. Quick Setup Instructions for details.

# 4. Setting Nonstandard Input / Output Ranges

To select a nonstandard input/output range you will require a process loop calibrator or alternately a multimeter and an adjustable process signal source. Connect the process calibrator or multimeter to the analog input and output terminals. See **Figure 2** for connection details. The actuator will not move during this procedure.

- a. Setting a nonstandard analog input:
  - Select the voltage or current input range that most closely matches your nonstandard configuration using Step 2.a of the Setup Instructions.
  - Use the ↑ or ↓ key until io is displayed, then press the SELECT key.
  - 3. Set the process calibrator to the lowest input value.
  - Use the ↑ or ↓ key until ioFt is displayed, then press the SELECT key.
  - Use the ↑ or ↓ key to set the controller display to 0.
  - 6. Press the **SELECT** key to save the selection.
  - 7. Set the process calibrator to highest input value.
  - Use the ↑ or ↓ key until iSPn is displayed, then press the SELECT key.
  - Use the ↑ or ↓ key to set the controller display to 100, or to full scale if the full scale value has been modified from 100.
  - 10. Press the **SELECT** key to save the selection.
  - Press the key until the display shows actual actuator position in increments of 0-100% and the actuator begins to follow the input command signal.

# b. Setting a nonstandard analog output:

- Select the voltage or current output range that most closely matches your nonstandard configuration using Step 2.b of the Setup Instructions.
- Use the ↑ or ↓ key until io is displayed, then press the SELECT key.
- 3. Use the ↑ or ↓ key until ooFt is displayed, then press the **SELECT** key.
- Use the ↑ or ↓ key to set the output signal lowest value as displayed on the process calibrator or multi-meter. The controller will automatically set the output to the lowest value during this step. The display indicates the value of the output d-a converter from 0 1023.
- 5. Press the **SELECT** key to save the selection.
- 6. Use the ↑ or ↓ key until oSPn is displayed, then press the **SELECT** key.
- Use the ↑ or ↓ key to set the output signal highest value as displayed on the process calibrator or multi-meter. The controller will automatically set the output to the highest value during this step. The display indicates the value of the output d-a converter from 0 1023.
- 8. Press the SELECT key to save the selection.

# 5. Selecting an Alternate Fail Position on Loss of Command Signal

The controller can sense the loss of the analog input signal for configurations that have an input signal at least 2% of full scale above zero input. Two settings are available, loss of signal threshold and position on loss of signal. The EASC offers four failure modes to control the movement of the actuator in the event of a command signal loss:

- Fail in last position: no actuator movement upon loss of signal. This is the factory default setting.
- Fail to the full clockwise / extend position
- Fail to the full counterclockwise / retract position
- Fail to a preset position

# NOTE: For a setting of zero input signal the system fails to minimum signal position.

- a. Setting the Fail Safe Position:
  - Use the ↑ or ↓ key until *io* is displayed, then press the SELECT key.
  - 2. Use the ↑ or ↓ key until *FSPn* is displayed, then press the **SELECT** key.
  - Use the ↑ or ↓ key to set the fail safe position to the required location. Setting the fail safe position to greater than full scale (101 standard), will enable fail in last position mode.
  - 4. Press the **SELECT** key to save the selection.
- b. Setting the Fail Safe Loss of Signal Threshold:
  - Use the ↑ or ↓ key until *io* is displayed, then press the SELECT key.
  - Use the ↑ or ↓ key until *FSth* is displayed, then press the SELECT key.
  - Use the ↑ or ↓ key to set the input threshold in percent, or units of full scale, where the fail safe function will be activated. The fail safe function will be activated whenever the input signal falls below the threshold setting. Hysteresis of 1% is automatically provided on the fail safe threshold.
  - 4. Press the **SELECT** key to save the selection.

# 6. Using the Current Protection Option

An optional current sensing protection system is available for the controller. To utilize this system an optional current sense transformer is required. Plug the current sense transformer into the circuit board as shown in Figure 1. Pass the motor neutral (common) wire through the hole in the current sensor.



### Figure 1 Location of the Current Transformer

The current protection system operates by comparing the motor current to a preset value *hCUr*. If the motor current exceeds *hCUr* for longer than the timer *tCUr* and over current error, *f oc* will be displayed and the motor will be stopped. Once in over current, the controller will not respond to further requests for movement in the same direction, until a move in the opposite direction has occurred. Pressing any key on the keyboard can also clear the error. The following advanced menu options require setup to use the current sensing system:

| ltem | Description                                                                                                                                                                                                                                                                                                                                                                               | Default | Range  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| hCUr | This value determines the maximum full load amps of the actuator motor. Set this value to an amount at least 5% above the loaded running amps for the motor. The CSPn setting allows for the scaling of the sensed current value. The running current of the motor can also be displayed using the CSPn function.                                                                         | 200     | 0-1023 |
|      | This value is scaled as 0.00A. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                                                  |         |        |
|      | This value determines the maximum time that the actuator can exceed the preset full load amps hCUr of the actuator motor before a fault is declared. The display will indicate f oc should this protection feature activate.                                                                                                                                                              | 0 0-2   | 0.255  |
| tCOr | This timer is calibrated in 1 second increments for V1.00 software and 0.1 second increments in V1.11 and later software versions. Note the display does not show the implied decimal point.                                                                                                                                                                                              |         | 0-255  |
| Coft | This value is automatically set during the calibration. The value is adjusted by select-<br>ing the menu item, then adjusting the value to 0.                                                                                                                                                                                                                                             | 0       | 0 1022 |
|      | The value is calibrated in 0.01A increments. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                                    |         | 0-1022 |
| CSPn | This value is set by selecting the menu item and then manually running the actuator<br>motor using a wire jumper or manual push button station. The display will indicate<br>the running amps of the motor. The displayed value can be verified against a clamp-<br>on or in-line ammeter. Use the keyboard to adjust the display to indicate the actual<br>running current of the motor. | n/a     | 0-1023 |
|      | This value is scaled as 0.01A. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                                                  |         |        |

# 7. The Automatic Calibration System

The controller automatically determines the best operating parameters for the attached actuator. Before starting the calibration be certain that is actuator is safe to move and that the potentiometer and limit switch have been correctly adjusted. See Section 2.d. Positioning the potentiometer shaft for information on adjusting the potentiometer and limit switches.

### a. Starting a calibration

To initiate an automatic calibration:

- 1. Press the ↑ or ↓ key until *Cal* is displayed, then press the **SELECT** key.
- Press the ↑ or ↓ key until YES is displayed, then press the SELECT key.
- 3. The automatic calibration sequence will now begin.
- To stop a calibration in progress, press the key. The calibration will be aborted and the previous calibration restored.

# b. Calibration Steps

The display will indicate the calibration step, **C 1** though **C 11**, being performed. Should the controller be unable to complete the calibration cycle, the step where the cycle halted will be displayed as **CFXX**, with **XX** being the step number. The calibration is complete when the display returns to **CAL**. Refer to **Section 10**. **Connection Drawing** for the location of the status lamps described in the calibration sequence. The following are the steps performed during a calibration:

| Step | Description                                                                                                                                                                                                                                | Lamp 2<br>rotn = CC-r                  | Lamp 3<br>rotn = CC-r                  | Lamp 4<br>rotn = CC-                                      | Lamp 5<br>rotn = CC-r                                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|      |                                                                                                                                                                                                                                            | Lamp 3<br>rotn = C-E                   | Lamp 2<br>rotn = C-E                   | Lamp 5<br>rotn = C-E                                      | Lamp 4<br>rotn = C-                                       |
|      |                                                                                                                                                                                                                                            | (Note 1)                               | (Note 2)                               | (Note 3)                                                  | (Note 4)                                                  |
| C 1  | Capture the current detection system input offset                                                                                                                                                                                          | On unless at mini-<br>mum signal limit | On unless at maxi-<br>mum signal limit | Off                                                       | Off                                                       |
| C 2  | Run towards the maximum signal limit switch for 2 seconds                                                                                                                                                                                  | On unless at mini-<br>mum signal limit | On unless at maxi-<br>mum signal limit | Off                                                       | On unless at maxi-<br>mum signal limit                    |
| C 3  | Move to the minimum signal limit switch, then wait <b>CALd</b> time                                                                                                                                                                        | On until at minimum<br>signal limit    | On unless at maxi-<br>mum signal limit | On until at minimum<br>signal limit                       | Off                                                       |
| C 4  | Capture actuator potentiometer<br>input zero offset value                                                                                                                                                                                  | Off                                    | On                                     | Off                                                       | Off                                                       |
| C 5  | Move to the maximum signal limit<br>switch, then wait <b>CALd</b> time, cap-<br>ture actuator potentiometer input<br>span value                                                                                                            | On                                     | On until at maxi-<br>mum signal limit  | Off                                                       | On until at maxi-<br>mum signal limit                     |
| C 6  | Move to ¼ of full scale position                                                                                                                                                                                                           | On                                     | On On                                  |                                                           | Off                                                       |
| C 7  | Wait 2 seconds, capture the move towards minimum setback value                                                                                                                                                                             | On                                     | On                                     | Off                                                       | Off                                                       |
| C 8  | Move to 3/4 of full-scale position                                                                                                                                                                                                         | On                                     | On                                     | Off                                                       | On                                                        |
| C 9  | Wait 2 seconds, capture the move<br>towards maximum limit setback<br>value                                                                                                                                                                 | On                                     | On                                     | Off                                                       | Off                                                       |
| C 10 | If required, jog motor, jogs will<br>towards the minimum signal limit<br>switch unless ¼ of full scale is<br>reached, then movement reverses<br>towards maximum signal limit;<br>direction changes again if ¾ of full-<br>scale is reached | On                                     | On                                     | On for movements<br>towards the mini-<br>mum signal limit | On for movements<br>towards the maxi-<br>mum signal limit |
| C 11 | Wait jog off time; if 3 jogs have<br>completed without adjustment,<br>save jog on time, maximum jog on<br>time and minimum jog on time;<br>otherwise adjust jog on time and<br>go to step 10                                               | On                                     | On                                     | Off                                                       | Off                                                       |
| CAL  | Calibration cycle is complete and<br>new values are saved to non-vola-<br>tile memory                                                                                                                                                      | On                                     | On                                     | Off                                                       | Off                                                       |

Notes:

1. Green lamp 2 is off when at full C-E limit.

2. Green lamp 3 is off when at full CC-r limit.

3. When red lamp 4 is on the motor must run towards the full C-E limit switch.

4. When red lamp 5 is on the motor must run towards the CC-r limit switch.

The calibration system only saves the calculated parameters upon completion of a calibration cycle. Terminating of the calibration process by fault or by using the  $\leftarrow$  key will abort the calibration and restore the previous calibration values.

# c. Troubleshooting a failed calibration

The following guide will assist in troubleshooting failed calibrations. A calibration has failed if a **CF X** error is displayed during the calibration. To clear the error message press any key. The following table describes some of the common calibration problems and suggested solutions:

| Indication                                                                                                                | Problem                                                                                       | Solution                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           | The actuator is not<br>receiving a signal<br>from the potenti-<br>ometer                      | See Section 2.d Position-<br>ing the potentiometer<br>shaft for instruction on<br>setting the potentiometer<br>and confirming the poten-<br>tiometer input                                                                                                                                                                        |
| A <b>CF 8</b> error<br>occurred                                                                                           | The actuator motor<br>is not running when<br>required.                                        | Use the instructions in<br>Section 2.d Positioning<br>the potentiometer shaft<br>to move the motor and<br>verify correct operation                                                                                                                                                                                                |
|                                                                                                                           | The limit switches are not working                                                            | Use the instructions in<br>Section 2.d Positioning<br>the potentiometer shaft<br>to move the actuator to<br>the limits and verify limit<br>switch operation                                                                                                                                                                       |
| A <b>CF 5</b> error<br>occurred                                                                                           | The actuator run-<br>ning time exceeds<br>1023 seconds (255<br>seconds for V1.00<br>software) | The controller will not work<br>with this actuator, this is<br>the maximum allowed run-<br>ning time                                                                                                                                                                                                                              |
| The ac-<br>tuator stops<br>early during<br>step <b>C 3</b> or<br><b>C 5</b> or does<br>not capture<br>the correct<br>span | The <b>CALd</b> timer is not set long enough                                                  | The controller senses shaft<br>movement during steps <i>C</i><br><i>3</i> and <i>C 5</i> ; if the shaft does<br>not move or moves too<br>slowly, timer <i>CALd</i> may ex-<br>pire prematurely; increase<br>timer <i>CALd</i> for actuators<br>with a long dead period i.e.<br>Sure49's or actuators with<br>a very long run time |

# 8. Controller Menus

There are two control menus. The Basic Menu allows for the standard configuration of the controller. Covered by this menu are the setup of the analog input and output, the setting of the direction of rotation, adjustment of the actuators potentiometer and initiation of the automatic calibration system.

The Advanced Menu allows for the customization of the controller to actuators with operation outside of the standard settings.

The menus are accessed using the system keyboard. Pressing any key from normal operating mode enters the menu system. The  $\uparrow$  key moves up one item within a menu tree. The  $\checkmark$  key moves down one item within a menu tree. The  $\uparrow$  back key moves up one menu tree or, in the case of the uppermost menu, back to operating mode. Once the menu item has been selected, pressing the SELECT key displays the value associated with the item. The  $\uparrow$  up and  $\checkmark$  down keys adjust the value. The  $\leftarrow$  back key aborts any changes made to the item and moves back to the item menu. The SELECT key saves the adjusted value to nonvolatile memory and returns to the item menu.

# a. Basic Setup Menu

The Basic Setup Menu is used for the setup and calibration of standard actuators.

| Group | Item | Description                                                                                                                                                                                                                                                                              | Default Setting                                |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| In    | 0-10 | Sets analog input to 0-10 Vdc range                                                                                                                                                                                                                                                      |                                                |
|       | 2-10 | Sets analog input to 2-10 Vdc range                                                                                                                                                                                                                                                      |                                                |
|       | 1-5  | Sets analog input to 1-5 Vdc range                                                                                                                                                                                                                                                       |                                                |
|       | 4-20 | Sets analog input to 4-20 mAdc range                                                                                                                                                                                                                                                     | 4-20 mAdc                                      |
| OUt   | 0-10 | Sets analog output to 0-10 Vdc range                                                                                                                                                                                                                                                     |                                                |
|       | 2-10 | Sets analog output to 2-10 Vdc range                                                                                                                                                                                                                                                     |                                                |
|       | 1-5  | Sets analog output to 1-5 Vdc range                                                                                                                                                                                                                                                      |                                                |
|       | 4-20 | Sets analog output to 4-20 mAdc range                                                                                                                                                                                                                                                    | 4-20 mAdc                                      |
| Rotn  | CC-r | Maximum input signal moves actuator shaft to fully counter-clockwise or re-<br>tracted.                                                                                                                                                                                                  | СС                                             |
|       | C-E  | Maximum input signal moves actuator shaft to fully clockwise or extended                                                                                                                                                                                                                 |                                                |
| Pot   |      | Pressing $\clubsuit$ key moves actuator to increase potentiometer value. Pressing $\clubsuit$ key moves actuator to decrease potentiometer value. Display shows actual potentiometer value from 10 – 1023                                                                                |                                                |
| CAL   | Νο   | Used to initiate a self-calibration. See <b>Setup Instructions Section 6 – The Au-</b><br>tomatic Calibration System.                                                                                                                                                                    |                                                |
| lo    | ioft | Adjust the analog input offset The display shows the input signal in units of full scale. This function allows the setting of non-standard input ranges. See <b>Section 4 - Setting Nonstandard Input / Output Ranges</b> for instructions to set this value.                            | Offset set for 4 mAdc = 0%                     |
|       | iSPn | Adjust the analog input span. The display shows the input signal in units of full scale. This function allows the setting of non-standard input ranges. See <b>Section</b><br><b>4 - Setting Nonstandard Input / Output Ranges</b> for instructions to set this value.                   | Span set for<br>20 mAdc = 100%                 |
|       | ooFt | Adjust the analog output offset. The display shows the output d-a converter value, which must be between 0 and 1024. This function allows the setting of non-standard output ranges. See <b>Section 4 - Setting Nonstandard Input /Output Ranges</b> for instructions to set this value. | Offset set for 0% = 4 mAdc                     |
|       | oSPn | Analog output span. The display shows the output d-a converter value, which must be between 0 and 1024. This function allows the setting of non-standard output ranges. See <b>Section 4 - Setting Nonstandard Input / Output Ranges</b> for instructions to set this value.             | Span set for<br>100% = 20 mAdc                 |
|       | FSth | Set the fail-safe threshold in units of full scale. The display shows the current threshold. See <b>Section 5 – Selecting an Alternate Fail Position on Loss of Command Signal</b> for instructions to set this value.                                                                   | 1%                                             |
|       | FSPn | Set the fail-safe position in units of full scale. The display shows the current fail-<br>safe position. See <b>Section 5 – Selecting an Alternate Fail Position on Loss of</b><br><b>Command Signal</b> for instructions to set this value.                                             | 101%<br>(Do not move on input<br>signal fault) |
|       | L-r  | Set the unit in local or remote. The local setting must be used if you are not controlling the actuator using MODBUS or DeviceNet protocols. See <b>Section 10 – Selecting Remote Operation.</b>                                                                                         | L = local control                              |
|       | bAUd | Set unit Mosbuss baud rate. See Section 10 - Selecting Remote Operation.                                                                                                                                                                                                                 | 9600                                           |
|       | Addr | Set Modbus Network address. See Section 10 - Selecting Remote Operation.                                                                                                                                                                                                                 | 1                                              |

# b. Advanced Setup Menus

The advanced setup menu allows the controller to be adapted to a wide variety of actuators. These parameters should be adjusted only if the pre-set values are not suitable for your application. Erratic operation can occur if these values are adjusted. Use caution when adjusting these parameters. There are four sub-menus in the Advanced Menu system:

| Group | Description                |
|-------|----------------------------|
| ACC   | Controller accuracy menu   |
| JoG   | Jogging system menu        |
| Prot  | Controller protection menu |
| LPoL  | Limit switch polarity menu |

Operation of the keyboard and display during Advanced Setup is the same as for Basic Setup. To enter the advanced setup menu:

- From normal operating mode, use the ↑ or ↓ key until in is displayed.
- 2) Press and hold the **SELECT** key for 10 seconds.
- 3) The advanced menu is entered when the display shows **ACC**.
- Use the ↑ or ↓ key to display the sub-menu required; ACC, JoG, Prot, or LPoL, then press the SELECT key to enter the sub-menu.
- i. The Accuracy Menu [ACC]

The Accuracy Menu allows the adjustment of the controller's position accuracy, response time and calibration delay time.

The default configuration of the accuracy menu is:

- The actuator will adjust to position within ±1 division of full scale. This means that if the input is calling for 50%, the actuator will be positioned from 49% to 51% (SACC);
- 2. The controller is set to 100 divisions for full scale (*FSCL*), allowing for 1% accuracy;
- Input signals less than 2% will cause the actuator to move towards 0% until the 0% limit switch turns off, regardless of the potentiometer signal (*FCLS*);
- Input signals greater than 98% will cause the actuator to move towards full-scale until the full-scale limit switch turns off, regardless of the potentiometer signal (*FoPn*);
- The actuator will wait for 5 seconds of no movement during calibration steps 4 and 5 before capturing values (*CALd*);
- The response time (the time before the controller begins to move on a change in input signal) is set to 0.5 seconds (*hLdt*).

If these default values do meet the requirements for the actuator, they can be adjusted using the **ACC** menu.

| Item | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default | Range                          |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------|
| SACC | This value can be adjusted to increase or decrease the sensitivity of the controller to input signal changes. If more accurate positioning is required, reduce this value to 0. To reduce unwanted movement with a constantly changing input signal, increase this value.                                                                                                                                                                                                   | 1       | 0-1023                         |
|      | After adjusting this value, run the automatic calibration procedure. The automatic calibration will determine the optimum operation of the controller for the accuracy you have selected.                                                                                                                                                                                                                                                                                   |         |                                |
|      | Setting this value to zero may cause the controller to continuously move the actuator as it attempts to track very small input signal changes. In applications where high accuracy is required, but excessive actuator movement occurs, the response time can be increased to reduce the movement, see <b>hLdt</b> in this section.                                                                                                                                         |         |                                |
|      | This value is in units of full-scale.                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                |
| FSCL | This value determines the number of divisions used for full-scale. This divides the actuator travel into 100 divisions (1%). Most actuators cannot mechanically deliver accuracy better than 1%. The controller can accommodate accuracies in excess of 1 part in 200 (0.5%), but only on mechanical systems capable of this accuracy. The automatic calibration system uses this value to set full-scale for the potentiometer signal.                                     | 100     | 0-1023                         |
|      | If this value is adjusted, the following menu items will have to be adjusted to reflect the new full-<br>scale setting: <b>FoPn, iSPn, oSPn</b> and <b>FSPn</b> .                                                                                                                                                                                                                                                                                                           |         |                                |
|      | The automatic calibration system must be run after setting this value.                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                |
| FCLS | This setting ensures the actuator will move to the limit switch for input signals close to 0. Setting this value to 1 or greater ensures that the actuator will move to the 0% limit switch regardless of the potentiometer value.                                                                                                                                                                                                                                          | 2       | 0-4                            |
|      | Setting this value to 0 disables the force full-closed feature.                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                |
|      | This value is in units of full-scale.                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                |
| FoPn | This setting ensures the actuator will move to the limit switch for input signals close to full-scale.<br>Setting this value to 99 or less ensures that the actuator will move to the full-scale limit switch<br>regardless of the potentiometer value.                                                                                                                                                                                                                     | 98      | up to –4<br>from full<br>scale |
|      | Setting this value to full-scale disables the force full-open feature.                                                                                                                                                                                                                                                                                                                                                                                                      |         |                                |
|      | This value is in units of full-scale.                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                |
| CALd | During an automatic calibration sequence the controller waits for cessation of change from the potentiometer signal at step 3 (capture 0) and step 5 (capture full-scale). This timer is default set to 5 seconds. Certain actuators have long periods of inactivity while winding return springs or other failsafe devices or may have very long actuation times. Increasing this value will allow the controller to wait longer before assuming the actuator has stopped. | 50      | 1-255                          |
|      | The timer is calibrated in 0.1 second increments. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                                                                                                                 |         |                                |
| hLdt | This timer forces a delay in the response of the controller to changing input signals. The input signal will have to have changed outside of the accuracy window for at least this length of time before a new move will begin. If the signal is moving in and out of the accuracy window, it must continuously remain outside of the accuracy window for at least this time before a new move will begin.                                                                  | 60      | 1-255                          |
|      | In high accuracy applications this timer can be increased to reduce unwanted movements due to small input signal changes.                                                                                                                                                                                                                                                                                                                                                   |         |                                |
|      | In applications where quick response is important, this timer can be decreased. It is not recommended that this timer be decreased for high accuracy applications unless the actuator is designed for continuous duty cycle operation.                                                                                                                                                                                                                                      |         |                                |
|      | This timer is calibrated in ac line half cycles or 8.33 milliseconds for 60hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.                                                                                                                                                                                                                                                                                                                           |         |                                |

### ii. The Jogging System Menu [JoG]

During the automatic calibration sequence the controller determines if jogging is required to achieve the selected accuracy. Jogging is the use of time instead of potentiometer feedback to move the actuator. During calibration, the controller determines how early it must stop the actuator motor to achieve the input position. If the selected accuracy (SACC) is smaller than the early stop values, the controller will enable jogging and use timed pulses to accomplish small movements.

For example, if the actuator requires 2 divisions to stop and has an accuracy setting of 1 division, the controller will use timed pulses (jogging) for movements of 1 division or less. For larger movements it will use the potentiometer signal to determine the stop position. By using timed pulses the controller avoids over-running the position and allows for improved accuracy without hunting, especially for high speed actuators. If jogging is enabled during calibration, the controller will also learn the correct time to move 1 division during calibration. After each jog, a delay is inserted to wait for the potentiometer signal to respond. The potentiometer signal is the final value used to determine if the actuator is in position.

The calibration system will disable jogging if it is not required.

The jogging system can be adjusted to allow for operation not anticipated by the automatic calibration system.

| Item | Description                                                                                                                                                                                                                                                                                                                                                                  | Default           | Range |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|
| Jon  | This value is the length of the timed motor run pulse. The value is determined automatically during calibration.                                                                                                                                                                                                                                                             | 20                | 0-255 |
|      | This value should equal the time to move the actuator 1 division in the same direction as the last move.                                                                                                                                                                                                                                                                     |                   |       |
|      | Most actuators have lash in their gearing systems. This lash creates a requirement for longer motor run times during a move in a direction opposite of the last move. A correctly adjusted jog on time will move the actuator 1(one) division during a same direction move. It may require several jogs for a single division move in the reverse direction. This is normal. |                   |       |
|      | Increasing this value from the calibration determined value may cause the actuator to be unable to achieve the required set-point.                                                                                                                                                                                                                                           |                   |       |
|      | This timer is calibrated in ac line half cycles or 8.33 milliseconds for 60hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.                                                                                                                                                                                                                            |                   |       |
| JoFF | The jog off time is time required for the accurate reading of the position potentiometer after a jog has completed.                                                                                                                                                                                                                                                          | 10<br>(V1.00)     | 0-255 |
|      | Setting this value too low will cause actuator hunting. Too large a value will unnecessarily delay movement. The default value of 2 seconds should be satisfactory for most applications.                                                                                                                                                                                    | 20                |       |
|      | This timer is automatically set to 2 seconds by the calibration system should the calibration system determine that jogging is required.                                                                                                                                                                                                                                     | (V1.11/<br>V1.12) |       |
|      | Setting this value to 0 will disable the jogging system.                                                                                                                                                                                                                                                                                                                     |                   |       |
|      | The timer is calibrated in 0.1 second increments. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                  |                   |       |
| hion | This value is operational only on V1.00 software and is disabled in all later versions.                                                                                                                                                                                                                                                                                      | 40                | 0-255 |
|      | This value set the upper limit for the jog on value. V1.00 software automatically adjusts the jog on value after each jog. This value determines the highest value the jog on time could be set to during adjustment.                                                                                                                                                        |                   |       |
|      | The value is set in jog on time units of ac line half cycles or 8.33 milliseconds for 60hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.                                                                                                                                                                                                               |                   |       |
| Loon | This value is operational only on V1.00 software and is disabled in all later versions.                                                                                                                                                                                                                                                                                      | 1                 | 0-255 |
|      | This value sets the lower limit for the jog on value. V1.00 software automatically adjusts the jog on value after each jog. This value determines the lowest value the jog on time could be set to during adjustment.                                                                                                                                                        |                   |       |
|      | The value is set in jog on time units of ac line half cycles or 8.33 milliseconds for 60hz and 10.0 milliseconds for 50hz. Note the display is in half-cycles.                                                                                                                                                                                                               |                   |       |

# iii. The Protection Menu [**Prot**]

The controller incorporates several measures to protect the actuator motor and mechanism from damage. An optional current sense system is also available.

The basic protection measures include maximum running time and a forced delay between moves. The

over-current system allows for over-current monitoring and shutdown.

All protection systems disable further movement in the same direction after a fault is detected. Movements in the opposite direction can be initiated to reset the protection system.

| Item | Description                                                                                                                                                                                                                                                                                                                                                         | Default | Range           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|
| tFLt | This value is the maximum motor running time for the actuator. Set automatically to 10 seconds plus the actual running time determined during calibration.                                                                                                                                                                                                          | 60      | 0-255<br>V1.00/ |
|      | If this time is exceeded, the display will show <b>f pn,</b> which indicates that the actuator failed to reach position in the maximum allowed time.                                                                                                                                                                                                                |         | V1.11           |
|      | Setting this timer to 0 disables the timed protection system.                                                                                                                                                                                                                                                                                                       |         | 0-1023<br>V1.12 |
|      | This timer is calibrated in 1.0 second increments.                                                                                                                                                                                                                                                                                                                  |         |                 |
| trnd | This value is the minimum time delay imposed between movements. This timer allows the actuator motor to stop before each run, reducing motor heating. Do not set this timer shorter than the natural stopping time of the actuator motor.                                                                                                                           | 10      | 0-255           |
|      | This timer is calibrated in 0.1 second increments. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                        |         |                 |
| hCUr | The controller has an optional current monitoring system. This value determines the maximum full load amps of the actuator motor.                                                                                                                                                                                                                                   | 200     | 0-1023          |
|      | Set this value to an amount at least 5% above the loaded running amps for the motor. The <b>CSPn</b> setting allows for the scaling of the sensed current value. The running current of the motor can also be displayed using the CSPn function.                                                                                                                    |         |                 |
|      | This value is scaled as 0.00A. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                            |         |                 |
| tCUr | The controller has an optional current monitoring system. This value determines the maximum time that the actuator can exceed the preset full load amps <b>hCUr</b> of the actuator motor before a fault is declared. The display will indicate <b>f oc</b> should this protection feature activate.                                                                | 0       | 0-255           |
|      | This timer is calibrated in 1 second increments for V1.00 software and 0.1 second increments in V1.11 and later software versions. Note the display does not show the implied decimal point.                                                                                                                                                                        |         |                 |
| Coft | The controller has an optional current monitoring system. This value sets the zero offset for the current detection system. This value is automatically set during calibration.                                                                                                                                                                                     | 0       | 0-1022          |
|      | The value is adjusted by selecting the menu item, then adjusting the value to 0.                                                                                                                                                                                                                                                                                    |         |                 |
|      | The value is calibrated in 0.01A increments. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                              |         |                 |
| CSPn | The controller has an optional current monitoring system. This value adjusts the span of the current detection system.                                                                                                                                                                                                                                              | n/a     | 0-1023          |
|      | To set this value, select the menu item and then manually run the motor using a wire jumper or<br>manual push button station. The display will indicate the running amps of the motor. The displayed<br>value can be verified against a clamp-on or in-line ammeter. Use the keyboard to adjust the display<br>to indicate the actual running current of the motor. |         |                 |
|      | This value is scaled as 0.00A. Note the display does not show the implied decimal point.                                                                                                                                                                                                                                                                            |         |                 |
| PFth | The controller has an optional "fail feedback signal system". This parameter sets the threshold in units (%) of full scale. The default setting of 2 means the feedback signal will be in fault if it is less than or equal to −2 or greater than or equal to 102.                                                                                                  | 2       | 2 - 10          |
|      | To ensure the detection of an open wiper signal condition, connect a resistor of 33 k $\Omega$ between terminals 1 and 2 of terminal block TB2. When the sensor used has that resistance or less, it does not need the extra resistor if the circuit is not open.                                                                                                   |         |                 |
| PFPn | The controller has an optional "fail feedback signal system". The following operations are available upon failure of the feedback signal:                                                                                                                                                                                                                           | 0       | 0 - 3           |
|      | 0 - disables the option, default setting. 1 - fail in place; 2 – move to minimum command signal position, closed; 3 – move to maximum command signal position, open.                                                                                                                                                                                                |         |                 |

iv. The Limit Switch Menu [LPoL]

The controller has relay controlled limit switch outputs. The actuator limit switches are always wired to open at the ends of travel. The relay outputs can be programmed to be either open or closed when at limit.

| Item | Description                                                                                                                                  | Default | Range       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|
| oPoL | Selects the polarity of the maximum input signal limit switch relay output contact, display of n.o. = normally open, n.c. = normally closed, | n.o.    | n.o. / n.c. |
| CPoL | Selects the polarity of the minimum input signal limit switch relay output contact, display of n.o. = normally open, n.c. = normally closed  | n.o.    | n.o. / n.c. |

# 9. Error Messages and Troubleshooting

The controller will display an error message when it is unable to complete a requested operation. The following table lists the operations and the associated error messages:

| Message                           | Operation                               | Fault Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fpg                               | Initial application of power            | The controller has detected invalid firmware during the power on test process. The opera-<br>tion of the controller may be unpredictable. Do not operate a controller that displays this<br>error message.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ftb                               | Initial application of power            | The controller has detected a corrupted parameter table during the power on test pro-<br>cess. During setup and calibration, the controller stores parameters to non-volatile flash<br>memory. A checksum is also stored to verify the table. During the power on test process<br>the parameters are recalled and the checksum verified. If the stored checksum does not<br>match the contents of the recalled table, this message is displayed. To clear this error, see<br><b>Section 3. Reloading the factory settings</b> to rebuild the parameter table. After com-<br>pleting the factory reload, perform an automatic calibration. After verifying the operation<br>of the controller, re-cycle the controller power. If the error message returns, the controller<br>flash memory is damaged. Do not operate a controller that continues to display this error<br>message after the above steps have been taken. |
| fee                               | Pressing the SELECT key to save a value | The controller was unable to save a parameter to non-volatile memory. Do not operate a controller that displays this message.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| fpn                               | During a positioning opera-<br>tion     | The controller was unable to reach position during a move operation. The following<br>causes may have prevented the controller from reaching position:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   |                                         | 1. The move was to full open or full close and the controller end of travel limit switch did not open;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   |                                         | 2. The end of travel limit switch for the direction of move requested has failed;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   |                                         | 3. The actuator motor did not run when requested;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   |                                         | 4. The actuator is jammed;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   |                                         | <ol> <li>The controller's maximum motor running time (<i>tFLt</i>) is set to too short a value, this<br/>timer is set automatically during calibration;</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   |                                         | 6. The controller is not correctly calibrated, run the automatic calibration system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                   |                                         | The controller has four status lamps to assist in troubleshooting position faults. Verify that the limit switch lamp is on and that the run motor lamp turns on for the direction of move requested. <b>See Section 11. Connection Drawings</b> for a description of the status indicators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| foc                               | During a positioning opera-<br>tion     | During a positioning operation, a motor over-current condition has been detected. See<br>Section 6. Setting the over-current protection system for details. If an <i>f oc</i> error oc-<br>curs and you do not have the current sense option installed, see Section 3. Reloading<br>the factory settings to rebuild the parameter table. This error can only occur by setting<br>parameter <i>tCUr</i> greater than 0, which enables current monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Incorrect<br>position<br>acheived | During a positioning opera-<br>tion     | The controller is not correctly calibrated; see Section 7. The Automatic Calibration System for instruction on performing a calibration and possible problems that could occur during a calibration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Status Lamp               | Operation                                                                                            |
|---------------------------|------------------------------------------------------------------------------------------------------|
| Lamp 2 <b>rotn = CC-r</b> | On when not at minimum signal limit                                                                  |
| Lamp 2 <b>rotn = C-E</b>  | On when not at maximum signal limit                                                                  |
| Lamp 3 <b>rotn = CC-r</b> | On when not at maximum signal limit                                                                  |
| Lamp 3 <b>rotn = C-E</b>  | On when not at minimum signal limit                                                                  |
| Lamp 4 <b>rotn = CC-r</b> | Motor must run while lamp on until at<br>minimum signal limit                                        |
| Lamp 4 <b>rotn = C-E</b>  | Motor must run while lamp on until at<br>maximum signal limit                                        |
| Lamp 5 <b>rotn = CC-r</b> | Motor must run while lamp on until at<br>maximum signal limit                                        |
| Lamp 5 <b>rotn = C-E</b>  | Motor must run while lamp on until at<br>minimum signal limit                                        |
| 4 Digit Display           | Indicates actual position of the actuator<br>in units of full-scale (Default setting is<br>0 – 100). |
|                           | Displays calibration menus; cleared by pressing 🗲 key until position is displayed                    |

# 10. Selecting Local/Remote Operation

There are 2 modes of operation of the actuator: Local and Remote. Two communication protocols are available in remote mode - Modbus and DeviceNet. Communication protocol for remote operation must be chosen at the time of ordering. The ACT100 actuator card has the Modbus option by default. Refer below section for Modbus Operation and next section for DeviceNet operation. In order to interface to MODBUS there are several communication parameters that need to be selected using the **Basic Parameter Menu**. These are:

# a. Manual Operation (L-r)

- L-r. Selects Local (Manual control of parameter selection) or remote (MODBUS) parameter selection. To manually return to Local operation, push any key for ten seconds until the display changes from BUSS to L-r.
- II. Baud rate.- Selects the communication speed of the device. While in the Basic Parameter Menu, scroll down until the display reads bAUd. Press the Select key, then Press the ↑ or ↓ key to scroll thru the available options. These options are: 2400, 4800, 9600, 14,400. Press the Select key to save the option you want.
- III. Address. Selects the Modbus Network address for the ACT-100 unit. While in the Basic Parameter Menu, scroll down until the display reads Address. Press the Select key, then Press the ↑ or ↓ key to increase or decrease the address number until you have the value that you want. The options are: 1-255. Press the Select key to save the option you want.
- IV. Br.- Selects the activation point for the SURE POWER Brake. Either Fully Open or Fully Closed. scroll down until the display reads Br. Press the Select key, then Press the ↑ or ↓ key to scroll thru the available options. These options are: Cr or Ce. Press the Select key to save the option you want.

b. Remote Operation Configuration Registers.

| I. ZERO OFFSET write     | to register            | 0x16    | (22             | decimal).         |
|--------------------------|------------------------|---------|-----------------|-------------------|
| II. SPAN write to regist | er                     | 0x17    | (23             | decimal).         |
| III. OPEN LIMIT TOLER    | ANCE write to          | registe | er<br>(25       | 0x19<br>decimal). |
| IV. CLOSE LIMIT TOLER    | ANCE write to          | regist  | er<br>(26       | 0x1A<br>decimal). |
| V. CONFIG PEAK CURI      | <b>RENT</b> write to r | egiste  | r<br><b>(27</b> | 0x1B<br>decimal). |
| VI. IDLE CURRENT write   | e to register          |         | (28             | 0x1C<br>decimal). |
| VII.JOG MOVE TOLERA      | NCE write to re        | egister | (29             | 0x1D<br>decimal). |
| VIII. JOG WAIT TIME w    | rite to register       |         | (30             | 0x1E<br>decimal). |
| IX. JOG OPEN TIME wri    | te to register         |         | (31             | 0x1F<br>decimal). |
| X. LOAD ZERO OFSET       | <b>r</b> read from reg | ister   | (32             | 0x20<br>decimal). |
| XI. LOAD SPAN read fro   | om register            |         | (33             | 0x21<br>decimal). |
|                          |                        |         |                 |                   |

# c. Remote Operation Commands (BUSS)

| <b>XII.BUSS.</b> – Unit is in remote mode (MODBUS<br>back and forth between Local (L-r) and re-<br>write any value to register | SS). To switch<br>mote (BUSS)<br><b>0x35</b> |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                                                                | (53 decimal).                                |
| XIII. FULL OPEN write any value to register                                                                                    | 0x01<br>(01 decimal).                        |
| XIV. STOP write any value to register                                                                                          | 0x02<br>(02 decimal).                        |
| XV. CALIBRATE write any value to register                                                                                      | 0x03<br>(03 decimal).                        |
| XVI. RESET write any value to register                                                                                         | 0x04<br>(04 decimal).                        |
| XVII. LOAD DEFAULTS write any value to reg                                                                                     | gister <b>0x05</b><br>(05 decimal).          |
| XVIII. PROTECT PARAMETERS write any val                                                                                        | ue to register<br><b>0x06</b>                |
| XIX. REMOVE PARAMETER PROTECTION w<br>to register                                                                              | vrite any value<br>0x07<br>(07 decimal).     |
| XX.TOGGLE OVERLOAD RESTART write any                                                                                           | y value to                                   |
| register                                                                                                                       | 0x09<br>(09 decimal).                        |
| XXI. FULL CLOSE write any value to register                                                                                    | 0x2F<br>(47 decimal).                        |
| XXII. LOCAL REMOTE SELECT write any value                                                                                      | ue to register<br><b>0x35</b>                |
|                                                                                                                                | (53 decimal).                                |
| <b>XXIII. GO TO XX</b> write any value BETWEEN 0 to register                                                                   | -MAX (0-100)<br>0x36<br>(54 decimal).        |
| d. Parameters Available by READ Commar                                                                                         | nds.                                         |

- I. CURRENT POSITION (2 bytes) read register 0x0A (10 Decimal). Returns current position of the shaft.
- II. PEAK CURRENT (2 bytes) read register 0x0C (12 decimal). Returns maximum current read.
- III. CURRENT NOW (2 bytes) read register
   0x0D

   (13 decimal). Returns most recent current reading.
- IV. PREVIOUS DIRECTION (1 byte) read register 0x0E (14 decimal). Returns the last direction the shaft was moving.
- V. LOCAL REMOTE (1 byte) read register 0x0F (15 decimal). Returns whether the device is in in Local or Remote mode (True/False).
- VI. LAST SEEK VALUE (2 bytes) read register 0x10 (16 decimal). Returns the last value that the shaft was supposed to move to.
- VII.OVERLOAD (1 byte) read register 0x12 (18 decimal). Returns whether the device is in overload (True/False).
- VIII. RESTART OVERLOAD STATUS (1 byte) read register 0x0E

(14 decimal). Returns restart overload status setting.

IX. LOG TIME (2 bytes) read register 0x0E (14 decimal). Returns

### e. DeviceNet Operation.-

If the ACT-100 PCB includes the DeviceNet Interface Board (DIB), the device will default to remote mode.

The following are the switch (S1) settings for the DIB in order to select the device address and to set the Communication speed (Baud Rate): See Figures 1 and 2 for wiring diagram for ACT-100 and DeviceNet card.

set device address (0 - 63) S1-1 (MSB) thru S1-8 (LSB)

set device baud rate (0 - 3) S1-9 (MSB) and S1-10 (LSB)

00 = 125K

01 = 250K

02 = 500K

03 = NV

NOTE: For wiring between ACT-100 PCB and DeviceNet Interface Board, wire per table below

| ACT-100 PCB       | DeviceNet<br>InterfaceBoard<br>(DIB) | Signal |
|-------------------|--------------------------------------|--------|
| Pin 1             | Pin 1                                | DO     |
| Pin 2             | Pin 2                                | DO     |
| Connect SHLD to o | ne end                               |        |

For example, to set address 9 with a baud rate of 250K the switch would set as follows:

| 1  |   |    | 0 |  |
|----|---|----|---|--|
| 2  |   |    | 0 |  |
| 3  |   |    | 0 |  |
| 4  |   |    | 0 |  |
| 5  |   |    | 0 |  |
| 6  | 1 |    |   |  |
| 7  |   |    | 0 |  |
| 8  | 1 |    |   |  |
| 9  |   |    | 0 |  |
| 10 | 1 |    |   |  |
|    |   | S1 |   |  |
|    |   |    |   |  |

Switch position 1234 5678 910

Switch setting 0000 0101 01

Connect CAN network to J13. Power to board has to be provided by CAN network (7 - 30VDC). Note: ACT-100 normal AC power connection is required. Power to J13 is only from the CAN bus.

| V+ CanH SHLD CanL V- |  |
|----------------------|--|
|----------------------|--|

Upon CAN bus power up: LED's flash green-red consecutively (M LED for "module", N LED for "network", A LED for "actuator")

Once communications with the network is established the "M" and "N" LED are on green. The "A" LED changes color and flashes per actuator direction and motion as per table below

| Color          | Actuator Indication   |
|----------------|-----------------------|
| RED            | Actuator at OL        |
| Blinking RED   | Actuator moving OPEN  |
| GREEN          | Actuator at CL        |
| Blinking GREEN | Actuator moving CLOSE |
| RED/GREEN      | Actuator STOPPED      |
|                |                       |

### **Command Words:**

At Class 0x40, instance 0x01 and attribute 0x01:

- bit 1 open actuator
- bit 2 close actuator
- bit 3 stop actuator
- bit 4 "remote shutdown" (actually also stop)
- bit 5 calibrate
- bit 6 reset (also stop)

To calibrate the ACT-100 simply issue the command CALIBRATE by setting bit 5 of the command word 0x40, instance 0x01, and attribute 0x01 to "1". See example below.

| 🕀 DeviceNet Master Simulator |                 |                                                   |           |
|------------------------------|-----------------|---------------------------------------------------|-----------|
| File Address Communication   |                 |                                                   | Help      |
|                              | Write Attribute |                                                   |           |
| DeviceNet Dongle Port        | Class ID        | 40 hex                                            | us normal |
| Baud Rate of DeviceNet Dor   | Instance ID     | 1 hex 🔽 hex                                       |           |
| Current Slave Address        | Attribute ID    | 1 hex                                             |           |
|                              | Data Type ——    |                                                   |           |
|                              | I hex           | <ul> <li>raw hex bytes (e.g. a1 bc 73)</li> </ul> |           |
| Edit                         |                 | © BOOL (01)                                       |           |
|                              |                 | C SINT (-128127)                                  |           |
| Freeze Outputs               |                 | O INT (-3276832767)                               |           |
| Output Data                  |                 | O DINT (-2^312^31-1)                              |           |
| 76543210                     |                 | O LINT (-2^632^63-1)                              |           |
| 0: 00h 00000000 .            |                 | O USINT (0255)                                    |           |
| 2. 00h 0000000 .             |                 | O UINT (065535)                                   |           |
| 3: 00h 00000000 .            |                 | O UDINT (02^32-1)                                 |           |
| 4: 00h 00000000 .            |                 | O ULINT (02^64-1)                                 |           |
| 6: 00h 00000000 .            |                 | O REAL                                            |           |
| 7: 00h 00000000 .            |                 | O LREAL                                           |           |
|                              |                 | O STRING                                          | 115       |
|                              |                 | C SHORT_STRING (e.g. 3abc)                        |           |
|                              | Send Value      | 10 00 hex                                         |           |
| Shedenie Keverwin. Weigi Cer | Close           | Write                                             |           |
|                              |                 |                                                   |           |

### Setpoint Words:

At class 0x40 instance 0x01 and attribute 0x02 (forces actuator to specific position). Format 0 - 100%.

See example below for instruction of moving the actuator to 100% (64 Hex).

| C DeviceNet Master Simulator           |                 |                                                   |               | A 9447.07                        |
|----------------------------------------|-----------------|---------------------------------------------------|---------------|----------------------------------|
| File Address Communication             |                 |                                                   |               | Help                             |
| 1                                      | Write Attribute |                                                   |               | -                                |
| DeviceNet Dongle Port                  | Class ID        | 40 hex                                            | us normal     |                                  |
| Baud Rate of DeviceNet Dor             | Instance ID     | 1 hex 🔽 hex                                       |               | 247 - 24<br>                     |
| Current Slave Address                  | Attribute ID    | 1 hex                                             |               | 27.27.27<br>27.27.27<br>27.27.27 |
|                                        | Data Type       | <ul> <li>raw hex bytes (e.g. a1 bc 73)</li> </ul> |               | <u>a</u>                         |
| Edit                                   |                 | © BOOL (01)<br>© SINT (-128127)                   |               |                                  |
| Freeze Outputs                         |                 | C INT (-3276832767)                               |               | -                                |
| Output Data<br>76543210                |                 | © LINT (-2°312°31-1)<br>© LINT (-2°632°63-1)      |               | 1                                |
| 0: 00h 00000000 .                      |                 | O USINT (0255)                                    |               |                                  |
| 2: 00h 00000000 .                      |                 | C UINT (065535)<br>C UDINT (02^32-1)              |               | ýma//                            |
| 4: 00h 00000000 .                      |                 | O ULINT (02^64-1)                                 |               |                                  |
| 5: 00h 00000000 .<br>6: 00h 00000000 . |                 | O REAL                                            |               |                                  |
| 7: 00h 00000000 .                      |                 |                                                   | 115           |                                  |
|                                        |                 | C SHORT_STRING (e.g. 3abc)                        |               |                                  |
| spisceme Rev3 MD. WHOLCE               | Send Value      | 10 00 hex                                         | Eshield EINAL | Lxml                             |
|                                        | Close           | Write                                             |               |                                  |

# Status Word:

At class 0x40 instance 0x01 and attribute 0x03 has bit mapped actuator status

- bit 1 open limit reached
- bit 2 closed limit reached

bit 3 remote mode (will be forced into this mode if deviceNET board is connected to ACT).

- bit 4 local mode
- bit 5 act running open
- bit 6 act running closed
- bit 7 esd active
- bit 8 commanded open
- bit 9 commanded closed

### Alarm Word:

At class 0x40 instance 0x01 and attribute 0x04 reads error register from ACT-100 board.

### **Position:**

At class 0x40 instance 0x01 and attribute 0x05 gives you the actuator position in 0 - 100 % format

See example below for instruction to move actuator to 100%. (64 Hex)

| C DeviceNet Master Simulator                    |                 |                               |                                       |
|-------------------------------------------------|-----------------|-------------------------------|---------------------------------------|
| File Address Communication                      |                 |                               | Help                                  |
|                                                 | Write Attribute |                               | 22                                    |
|                                                 |                 |                               |                                       |
|                                                 | Class ID        | 40 hex                        |                                       |
| DeviceNet Dongle Port                           |                 |                               | us normal                             |
| Baud Rate of DeviceNet Dor                      | Instance ID     | 1 hex 🔽 hex                   | 1.7 Mar                               |
| Dalla Hale of Devicerver Don                    |                 |                               | ·                                     |
| Current Slave Address                           | Attribute ID    | 1 hex                         |                                       |
|                                                 | Data Type       |                               | 二                                     |
|                                                 | I hex           | raw hex bytes (e.g. a1 bc 73) | a a a a a a a a a a a a a a a a a a a |
| Edit                                            |                 | © BOOL (01)                   |                                       |
|                                                 |                 | C SINT (-128127)              |                                       |
| Freeze Outputs                                  |                 | INT (-3276832767)             |                                       |
| Output Data                                     |                 | O DINT (-2^312^31-1)          |                                       |
| 76543210                                        |                 | C LINT (-2^632^63-1)          |                                       |
| 0: 00h 00000000 .                               |                 | USINT (0255)                  |                                       |
| 1: 00h 00000000 .                               |                 | O UINT (065535)               |                                       |
| 2: UUN UUUUUUUU .<br>3 <sup>.</sup> OON OOOOOOO |                 | O UDINT (02^32-1)             |                                       |
| 4: 00h 00000000 .                               |                 | O ULINT (02^64-1)             |                                       |
| 5: 00h 00000000 .                               |                 | O REAL                        | j.;//i/im                             |
| 7: 00h 00000000 .                               |                 | C LREAL                       |                                       |
|                                                 |                 | C STRING                      | 115                                   |
|                                                 |                 | C SHORT_STRING (e.g. 3abc)    | 115                                   |
|                                                 |                 |                               |                                       |
|                                                 | Send Value      | 10 00 hex                     |                                       |
| gilaceme Rev8 MD WHQL Cer                       |                 | 1                             | Eshield FINAL.xml                     |
|                                                 | Close           | Vvnte                         |                                       |
| X                                               |                 |                               |                                       |

### Analog Input:

At class 0x40 instance 0x01 and attribute 0x06 from ACT board.

Deadband Number at class 0x40 instance 0x01 and attribute 0x07 reads/write SACC value of ACT board.

### **Reversal Delay**

At class 0x40 instance 0x01 and attribute 0x0D reads/writes HLDT value of ACT board.

|  | J2 | GND | DI4 | GND | DI3 | ] | GND | DI2 | GND | DI1 | J1 |
|--|----|-----|-----|-----|-----|---|-----|-----|-----|-----|----|
|--|----|-----|-----|-----|-----|---|-----|-----|-----|-----|----|

# Dimage0

At class 0x40 instance 0x01 and attribute 0x14 gives the 4 digital inputs on J1 and J2 (open reads 1)  $\,$ 

### Dimage1

At class 0x40 instance 0x01 and attribute 0x15 gives the address from S1 (0x000000 to 0x11111)

# Dimage2

At class 0x40 instance 0x01 and attribute 0x16 gives baud rate from S1 (0x00 to 0x11).

# **Raw Position**

At class 0x40 instance 0x01 and attribute 0x18 gives position in ADC counts 12-bit format (0x000 to 0xFFF).

# **Raw Analog Input Value**

At class 0x40 instance 0x01 and attribute 0x01 from ACT board.

# **Section 11: Connection Drawings**

Connection Drawing ACT-100



- 2. Green lamp off indicates potentiometer at full CC-E
- 3. Green lamp off indicates potentiometer at full CC-E
- 4. Red light on indicates motor running in C-r direction
- 5. Red light on indicates motor running in CC-E direction
- 6. Alarm output will be open when power off, if in fault or when display in menu modeC



Figure 2 - DeviceNet Card [ACT100+Devicenet Interface Board]



# **Connection Drawings**

Figure 3 - DeviceNet Interface Board

### **Connections to the customer Analog input terminals**



Figure 4 - Connections to the customer analog input terminals

### **Connections to the customer Analog Output terminals**



Figure 5 - Connections to the customer analog output terminals

# **DIRECT SALES OFFICE LOCATIONS**

+39-081-7892-111

+39-081-7892-208

AUSTRALIA Brisbane: +61-7-3001-4319 Phone: Fax: +61-7-3001-4399 Perth: Phone: +61-8-6595-7018 Fax: +6186595-7299 Melbourne: Phone: +61-3-8807-6002 +61-3-8807-6577 Fax: BELGIUM +32-2-344-0970 Phone: +32-2-344-1123 Fax: BRAZIL Phone: +55-19-2104-6900 CHINA Phone: +86-10-5689-3600 Fax: +86-10-5689-3800 FRANCE Courbevoie Phone: +33-1-4904-9000+33-1-4904-9010 Fax: GERMANY Ratingen +49-2102-108-0 Phone: +49-2102-108-111 Fax: INDIA Mumbai Phone: +91-22-8354790 Fax: +91-22-8354791

New Delhi Phone: +91-11-2-6164175 +91-11-5-1659635

Fax:

ITALY Phone: Fax:

JAPAN Tokyo

+81-03-6871-9008 Phone: +81-03-6890-4620 Fax:

KOREA Phone: +82-2-2274-0748 +82-2-2274-0794 Fax:

MALAYSIA +60-3-2161-0322 Phone: +60-3-2163-6312 Fax:

MEXICO Phone: +52-55-3640-5060

THE NETHERLANDS +31-15-3808666 Phone: Fax: +31-18-1641438

RUSSIA Veliky Novgorod +7-8162-55-7898 Phone: Fax: +7-8162-55-7921 Moscow Phone: +7 495-585-1276 +7 495-585-1279 Fax:

SAUDI ARABIA Phone: +966-3-341-0278 +966-3-341-7624 Fax:

SINGAPORE Phone: +65-6861-6100 +65-6861-7172 Fax:

SOUTH AFRICA Phone: +27-11-452-1550 +27-11-452-6542 Fax:

SOUTH & CENTRAL AMERICA AND THE CARIBBEAN Phone: +55-12-2134-1201 Fax: +55-12-2134-1238

SPAIN Phone: +34-93-652-6430 +34-93-652-6444 Fax:

UNITED ARAB EMIRATES +971-4-8991-777 Phone: +971-4-8991-778 Fax:

UNITED KINGDOM Bracknell Phone: +44-1344-460-500 Fax: +44-1344-460-537

Skelmersdale +44-1695-526-00 Phone: Fax: +44-1695-526-01

UNITED STATES Jacksonville, Florida +1-904-570-3409 Phone:

Corpus Christi, Texas +1-361-881-8182 Phone: +1-361-881-8246 Fax:

Deer Park, Texas Phone: +1-281-884-1000 +1-281-884-1010 Fax:

Houston, Texas Phone: +1-281-671-1640 Fax: +1-281-671-1735

bhge.com

\*Denotes a trademark of Baker Hughes, a GE company, LLC.

Other company names and product names used in this document are the registered trademarks or trademarks of their respective owners.

© 2018 Baker Hughes, a GE company, LLC - All rights reserved.

BHGE reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your BHGE representative for the most current information. The BHGE logo is a trademark of Baker Hughes, a GE company, LLC. Baker Hughes, a GE company, the GE monogram, and Masoneilan are trademarks of the General Electric Company and Baker Hughes, a GE company, LLC.

GFA33606 03/2018

